SALT TANK OPTION TO RESTORE SEMI-SALINE IRRIGATION WATER TO MARICOPA SALINITY DRIP TRIAL

We propose to install salt tanks and injection equipment at the test plot site to increase the canal water salinity (~0.5 dS/m EC) to the level of the original well water salinity (~2.5 dS/m EC).

The calculations below are for the added/injected salt load necessary to make this possible. A concentrated NaCl solution would only require a 2.5 gpm injection rate into the 3 manifolds (0.84 gpm/manifold) that service the test plot area. As there is no power to the trial area, this could be achieved with a water flow operated Dosatron or solar/battery powered injection pumps and 3, 3000-gallon poly tanks placed at each manifold. Salt mixing would be achieved with a gas-powered sump pump, adding bags of salt by hand. We need to dig down to each manifold line on the first trial row (Row 139), install injection ports and a riser topped with a 3" valve for the purpose of filling the tanks with water. The Excel sheet with the below calculations is attached. To keep up with the mid-summer irrigation demand this requires loading and mixing each tank with 2.25 tons of salt by hand every 7 days; this would be done by the postdoc, Mukesh Mehata and CSU summer student assistant . There is a little calcium in the well water (about 1 part Ca to 5 parts Na). This will be supplied by a 2-foot banded application of Lima pit gypsum (~85% purity) @ 1 ton/applied acre on top of the berm over the hose (using a Ranchero side deliver spreader) every 2 – 3 weeks. Details for the summarized calculations below are attached: Att_I_Test plot Area and Rqd Flow GPM.xlsx.

										Density	dry NaCl: 2	.16 g/cm³										
The solubility of sodium chloride is 35.7 g/100 mL water at 20°C.							1 US gallon =			3785	ml (cm3) water	@ 35% solubility =		1324.8	(grm Nat	Cl/gal) =	613.310185	35 (cm3 NaCl/gal)				
NaCl: for fi	eld temps	assume 3	5 g/100 g	water = 15	5.6% brin	e = 1.51 lb)/gal	Fina	al soluti	ion der	nsity =	(6	513 cm3 s	salt + 37	85 cm3 v	vater)/3	3785 cm	3/gal) =	1.16	gals		
															=	4397	(grm	s/gal) =	9.69	(lb/ga)	
		FLOW	W REQUIRED TO TESTPLOT + EXTRA TRE						ES ON 3 MANIFOLDS									=	= 1.51	(lb salt/gal)		
		= = 243 (t	rial area) + 41.4 (r	ows to N	V) + 75.8	(trees to	o S) =	360	gpm												_
WELL WATER O	QUALITY:					.,		,		01												Calculate
		lr	rigatio	on flov	<mark>v to e</mark> a	ach m	anifol	d =	120	gpm												
																						TDS
Description	Date	Time	at 25°C	EC	Ca	Mg	K	Na	SAR	SAR	CI	В	CO3	HCO ₃	Fe	Mn	SO4		NO3-N	L.I.	TDS	@ 640*EC
	Sampled	Sampled	unit	dS/m	meq/L	meq/L	meq/L	meq/L	calc	calc	meq/L	mg/L	meq/L	meq/L	mg/L	mg/L	meq/L	mg/L	lbs N/ac-ft	calc	mg/L	mg/L
Well Water																						
Coehlo Well	10/5/20	11:00	7.8	2.08	3.87	0.76		15.2	10.0	14.6	11.4	1.5	6.9	0.9	<0.10	0.0	6.90	<0.1		-0.1	1220	1331.2
Irrigation Well	10/28/22	12:51	8.1	2.54	3.2	0.2	0.06	15.90	12.30	16.60	9.7	1.68	ND	1.36	ND	0.05	8.4	0.3	0.8	0.1	1220	1625.6
CANAL WATER																						
Westlands TO	4/29/22			0.57	3.0			2.48			2.34	0.17					0.52	0.6			340	367.36
						(Actual nui	nber not ava	ailable fro	om Westlan	ds. Estimat	ed by maki	ng the ad	ditional ion.	s to reach	EC of 0.57)							
Post Filter Rep 3	7/19/23	11:00	7.6	0.19	06	0.5	0.03	0.81	1.13	0.95	0.6	0.07	ND	0.80	ND	ND	0.3	0.3	0.8	-1.3	125	121.6
						(Much low	er canal wat	er salinity	rthan usual	l due to the	record run	off year f	or 2023. 202	22 EC is mo	re typical.)							

ADDED SA	LT (using Na	CI for inc	reasing	CANAL T	DS to equ	ual WELL	water T	DS):				
Assume avera	ge WELL WATE	R TDS = 1600	ppm (EC =	= 2.5 dS/m)								
Assume average CANAL WATER TDS = 350 ppm (EC = 0.55 dS/m)												
NaCl on	ly per 3,0	00 gal t	ank se	erving 1	. manif	old @ :	120 gp	m:				
Mass	of added sa	lt to make	up diffe	erence =	1250	ppm, mį	g/l =					
0.0104	(lb/gal irrig	ation) =	1.25	(lb/120	gpm) =	75.06	(lb salt,	/hr)				
Injected volume of NaCl solution to be injected @ 1.51 lb/gal:												
=	49.8	(gals so	lution	597	(gal/12	hr set)						
=	0.83	(gpm s	olutio	n inject	ion flo	w)						
=	4,523	lb salt	per 30	<mark>00 gal</mark> 1	tank @	1.51 lb	o/gal					
=	3,615	minute	s irrigat	tion/300)0 gal =	5.02	12 hr s	ets				
=	1.58	inch app	olied w	ater @ ().63 in/o	day in 5.	02, 12	hr sets				
=	7.53	days in .	luly @	0.21 in/	day ET							
=	42.9	tons Na	<mark>Cl per t</mark>	ank for	season	<mark>@ 30" E</mark>	T/Irrig	ation				
Added S	olubor n	eeded (@ 21%	6 B)								
	Need to ad	d to add 1.5 ppm B to canal water = 7.2 ppm Solubor										
=	0.007	lb inject	ion of S	Solubor	per min	ute						
=	5.2	lb Solub	or per	12 hr se	t							
=	26.1	Ib per 3	<mark>3000</mark> g	<mark>al tank</mark>								
=	494.1	lb Solu	bor/ta	nk for	season	@ 30"	ET/Ir	rigation				

Here's the simple schematic for each of the 3 injection points.

Blake has remaining UCCE Farm Advisor funds to cover the cost of the plumbing modifications, pumps, Dosatron and power supply. Joe Coehlo of Valley Orchard tentatively can provide the three poly tanks and logistical support.

We would need to increase the budget to cover the cost of the salt and Solubor:

Quoted delivered cost : salt: \$46,648 and Solubor: \$3,144 = \$52,092 total. I (Louise Ferguson) can cover ~50% of this with the CDFA funds I have been using to supplement this experiment. We are requesting an additional \$26,046 to our proposal budget; our original proposal with a revised budget is attached: Att. II. Proposal HA-2024_23 Modifications_2024_03_08.